提交詢價(jià)信息
發(fā)布緊急求購(gòu)
您好,歡迎來(lái)到儀器交易網(wǎng)!手機(jī)版|本站服務(wù)|添加收藏|幫助中心
您所在的位置: 儀器交易網(wǎng) » 供應(yīng) » 行業(yè)專用儀器 » 其他行業(yè)專用儀器 » 三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life 三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life

三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life 三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life

北京科斯儀器有限公司
會(huì)員指數(shù): 企業(yè)認(rèn)證:

價(jià)格:電議

所在地:北京

型號(hào):三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life

更新時(shí)間:2023-10-27

瀏覽次數(shù):5017

公司地址:北京經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)榮華南路16號(hào)中冀斯巴魯大廈1504

程先生(先生)  

產(chǎn)品簡(jiǎn)介

,Sim4Life平臺(tái)結(jié)合可計(jì)算人類模型、強(qiáng)大的物理解算器和的組織模型,能直接分析人體真實(shí)和復(fù)雜技術(shù)設(shè)備,以及驗(yàn)證人體和解剖學(xué)環(huán)境之中的變化。Sim4Life采用高性能計(jì)算和直觀GUI架構(gòu),能實(shí)現(xiàn)的多

公司簡(jiǎn)介

北京科斯儀器有限公司注冊(cè)于北京經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū),是服務(wù)于中國(guó)境內(nèi)高等院校與科研院所的儀器、設(shè)備供應(yīng)商,是專門(mén)代理經(jīng)營(yíng)歐、美及國(guó)內(nèi)Z先進(jìn)的儀器、設(shè)備及技術(shù)的進(jìn)出口公司。愿與中、外同仁廣泛合作, 為中國(guó)的教育與科研事業(yè)在更廣范圍、更高層次上提供優(yōu)質(zhì)服務(wù)。
展開(kāi)

產(chǎn)品說(shuō)明

 三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life
   三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life 是由瑞士IT'IS基金會(huì)研發(fā)的,已獲得瑞士CTI醫(yī)療科技獎(jiǎng),Sim4Life平臺(tái)結(jié)合可計(jì)算人類模型、強(qiáng)大的物理解算器和的組織模型,能直接分析人體真實(shí)和復(fù)雜技術(shù)設(shè)備,以及驗(yàn)證人體和解剖學(xué)環(huán)境之中的變化。Sim4Life采用高性能計(jì)算和直觀GUI架構(gòu),能實(shí)現(xiàn)的多物理模擬,和無(wú)盡的定制加快研發(fā)活動(dòng),協(xié)助醫(yī)療及科研團(tuán)隊(duì)優(yōu)化醫(yī)療器械和治療方法,且同時(shí)符合安全性和有效性的要求。

 三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life運(yùn)作流程可分成MRI/CT 3D影像重建、解剖及產(chǎn)品模型導(dǎo)入(CAD)、多樣化解算器、組織和物理模型、直觀的分析報(bào)告及硬體驗(yàn)證等階段,能夠在取得多張影像資料之后,快速進(jìn)行完整3D三維影像重建,再利用內(nèi)建產(chǎn)品模型,產(chǎn)生接近真實(shí)狀況的模擬資料。而且產(chǎn)品本身支持市面上常見(jiàn)的模型軟件,包含各種公開(kāi)的人體解剖模型,能夠符合不同醫(yī)療環(huán)境的使用需求。

    三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life內(nèi)建為計(jì)算復(fù)雜問(wèn)題所設(shè)計(jì)的運(yùn)算核心,包括EM、熱學(xué)、聲波和流體求解,醫(yī)療研究單位只要安裝在能電腦上,即可在短時(shí)間內(nèi)獲得運(yùn)算結(jié)果。此外,三維人體組織仿真軟件平臺(tái)Sim4Life本身便有灌注模型,組織損傷模型和神經(jīng)元模型,均是現(xiàn)今手術(shù)過(guò)程中使用頻率zui高的元件,特別是軟件本身可透過(guò)簡(jiǎn)單易于操作的圖形化三維介面,協(xié)助操作者完成定義問(wèn)題、離散,模擬和分析等步驟,能讓模擬結(jié)果都更接近真實(shí)結(jié)果。

http://www.digitimes.com.tw/tw/x/img/x.gif    三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life可掌握病情狀況,實(shí)現(xiàn)客制化醫(yī)療訴求,能夠根據(jù)個(gè)體的差異,採(cǎi)取術(shù)前科學(xué)規(guī)劃、術(shù)中定位、術(shù)后準(zhǔn)確評(píng)估。Sim4Life平臺(tái)采用互動(dòng)式動(dòng)態(tài)建模方式,簡(jiǎn)單易用的下拉式建模工具列,不僅便于輸入醫(yī)療設(shè)備產(chǎn)生的各種影像檔,而只需利用滑鼠即可做視角縮放變換,輕松完成全人體三維模型,順利完成適宜的治療方案規(guī)劃。Sim4Life平臺(tái)具備易于編寫(xiě)的特性,加上擁有線上強(qiáng)大資料庫(kù),用戶很容易產(chǎn)生適合自身醫(yī)療環(huán)境的工具庫(kù),也能即時(shí)調(diào)整平臺(tái)的操作環(huán)境。所以軟件推出至今,已許多客戶以此平臺(tái)再創(chuàng)建了許多延伸應(yīng)用,如MRI線圈設(shè)計(jì)、造影解析度改量、人體模型開(kāi)發(fā)等等,堪稱是打造客制化醫(yī)療的工具。

    以醫(yī)學(xué)上常見(jiàn)的超音波刀進(jìn)行肝臟腫瘤切除為例,過(guò)去在醫(yī)師動(dòng)刀之前多只有平面影像圖可參考,只能約略掌握腫瘤位置與大小,因此手術(shù)成功率多半取決于醫(yī)師的經(jīng)驗(yàn)多寡,很容易因一時(shí)疏忽引發(fā)后續(xù)醫(yī)療糾紛。通過(guò)Sim4Life平臺(tái)的模擬軟件協(xié)助,醫(yī)師能在手術(shù)之前即了解腫瘤位置與體積大小,所以就算經(jīng)驗(yàn)較嫩的年輕醫(yī)師,亦能順利完成肝臟腫瘤切除的手術(shù)作業(yè)。尤其是護(hù)理人員也因能預(yù)知傷口大小,能在術(shù)后照顧準(zhǔn)備上更為充分,讓病患享有完善的照顧服務(wù)。再如電燒刀手術(shù)是另一種適合Sim4Life平臺(tái)協(xié)助的醫(yī)療手術(shù),該手術(shù)是針對(duì)心血管病變進(jìn)行的治療方式,但電燒刀電流密度高低與血管壁上剪應(yīng)力分布息息相關(guān)。一旦電燒刀上的電流過(guò)大,便可能造成傷口出血過(guò)多,所以若能透過(guò)術(shù)前的模擬軟件協(xié)助,則有助于提高手術(shù)的成功率。

    Sim4Life平臺(tái)使得個(gè)性化醫(yī)療將不再是遙不可及的夢(mèng)想,亦能降低醫(yī)療機(jī)械研究的成本,並符合各國(guó)法規(guī)的要求。特別是當(dāng)醫(yī)療團(tuán)隊(duì)能夠收集到更多資訊,為病人制訂專屬客制化醫(yī)療之后,不僅能創(chuàng)造出更好醫(yī)療效果,也能準(zhǔn)確后續(xù)預(yù)測(cè)治療結(jié)果,減少病患術(shù)后感染或藥物過(guò)敏的醫(yī)療糾紛,進(jìn)而讓寶貴醫(yī)療資源獲得利用。當(dāng)客制化醫(yī)療能夠逐步被實(shí)踐之后,立法機(jī)關(guān)也能制定一套更完善的治療準(zhǔn)則,對(duì)提升醫(yī)療照護(hù)品質(zhì)與水準(zhǔn)。在醫(yī)療觀念不斷提升之下,建構(gòu)一套完善的健康管理平臺(tái),已成為現(xiàn)代醫(yī)療醫(yī)學(xué)的新趨勢(shì)。

一般來(lái)說(shuō),健康管理平臺(tái)上收集到的資料有兩大用途,先是作為醫(yī)生治療前的評(píng)估參考,如用藥種類或是手術(shù)形式,其次則是將病歷資料轉(zhuǎn)換為更容易閱讀的可視化圖像。醫(yī)院或研究單位若能夠?qū)⑶笆鰞深愘Y料,輸入到多重物理模擬軟件Sim4Life時(shí),則有助于新醫(yī)療技術(shù)開(kāi)發(fā),進(jìn)而為特定疾病研發(fā)出更有效的藥物或治療工具。

In silico

The digital revolution is extending the frontiers of medicine and medical technology. Computer modeling and simulation (CM&S), or in silico technologies, merge computational tools with biology to intuitively, precisely, and reproducibly perform complex analyses of life sciences applications.  With this emerging paradigm, experimental manipulations that are infeasible or impossible to conduct in real-life experiments can be created while maintaining experimental control: the perfect complement to in vivo and in vitro studies.

ZMT provides in silico solutions to the medical device industry. Our comprehensive simulation platform, Sim4Life, provides a powerful 3D validated biological and anatomical modeling environment for optimizing the effectiveness and performance of medical devices, improving patient safety, and discovering potential new treatments. Built from the ground up, Sim4Life provides smooth and fully automated or customizable workflows for applications ranging from exploratory research and medical device development to regulatory documentation for clinical trials and device certification.

we trust

Our software tools are thoroughly and continually verified to ensure their reliability and performance requirements as they evolve.

The same effort is on validation for our expanding portfolio of targeted life sciences models and applications.

ZMT also provides test systems for validation procedures that support complex requirements with software tools optimized for test and measurement systems.

At ZMT, we leverage the combined strength of our expertise, experience, cost-effective solutions, and commitment to long and fruitful client relationships to enhance your competitive advantage during the regulatory submission process.


Phantoms     
Solvers & Tissue Models
 Validation Hardware


Sim4Life

Sim4Life is the first computational life sciences platform integrating computable human phantoms with the most powerful physics solvers and the most advanced tissue models for directly analyzing biological real-world phenomena and complex technical devices in a 3D validated biological and anatomical environment.

All modeling capabilities from the segmentation of medical image data, anatomical and CAD model import, discretization and simulation to visualization and analysis are embedded and streamlined to offer the most versatile and efficient simulation environment possible.

At the core of Sim4Life are the computable, high-fidelity 3D Virtual Population (ViP) human anatomical models. Carefully selected to fully represent global variations in human anatomy, the fully posable, morphable, and validated ViP models along with the IT'IS tissue properties database depict 15 different body types with 120 vital anatomical features and over 300 precisely identified tissues and organs. Cited and applied in hundreds of published studies and papers, the ViP models and the IT'IS material parameter database are continually and meticulously updated, refined, and expanded.

Sim4Life is a revolutionary simulation platform, combining computable human phantoms with the most powerful physics solvers and the most advanced tissue models, for directly analyzing biological real-world phenomena and complex technical devices in a validated biological and anatomical environment. The Sim4Life platform also offers leading performance with all the features expected from a multiphysics CAE/TCAD platform. Watch the Sim4Life demo video!

Computable Human Phantoms
Physics Solvers
Sim4Life natively supports the Virtual Population ViP 3.0 models that include integrated posing and morphing tools. Other publicly available animal and human anatomical models are also supported. All tissues are linked to a continually updated physical properties database.
The powerful Sim4Life solvers are specifically developed for computationally complex problems; HPC accelerated for the latest computer clusters; and smoothly integrated in the most advanced coupling framework. The platform already includes EM, Thermal Acoustic, and Flow solvers.

Tissue Models

framework

The integrated tissue models enable the modeling and analysis ofphysiological processes. Perfusion models, tissue damage models, and neuronal models are already included in the first release of Sim4Life.

The Sim4Life framework efficiently facilitates all steps in complex multiphysics modeling, from defining the problem, discretizing, simulating, and analyzing to visualizing the results, with clarity and flexibility.

Sim4Life Platform 三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life組成

Computable Human Phantoms

可計(jì)算人類仿真軟件

Physics Models

物理模型

Tissue Models

 組織模型

Intuitive GUI and Workflow

直觀圖形用戶界面及集成平臺(tái)

Licensed Modules

 可授權(quán)模塊

ViP 3.0

Virtual Population

P-EM-FDTD

Electromagnetics Full Wave Solvers

T-NEURO

Neuronal Tissue Models

iSEG

Medical Image Segmentation Tool Set

MRI

M-MUSAIK

M-TxCOIL

M-BCAGE

M-SYSSIM

M-GRAD

M-IMSAFE

ViA 1.0

Animal Models

P-EM-QS

Quasi-Static Electromagnetics Solvers

T-CEM43

Tissue Damage Models

MODELER

Advanced Modeling Tool Set

Third-Party Models

P-THERMAL

Thermodynamics Solvers

T-FLOWRATES

Flow Rate Computational Engine

MESHER

Robust & Effective Meshing

MODELING

M-REMESH

M-POSER

 

P-FLOW

Fluid Dynamics Solvers

 

ANALYZER

Versatile Postprocessor and Analyzing Tool Set

CALCULATORS

M-DISPFIT

M-PPCALC

 

P-ACOUSTICS

Acoustics Solvers

 

PYTHON

Control via Python scripting

PROCESSING

M-MATCH

M-TALATLAS

M-MBSAR

M-PHARRAY

 

P-CRD

Convection Reaction Diffusion Solvers


(coming soon)

 

 

 

P-MECH

Mechanical Solvers

(coming soon)

 

 

import

M-HUYGENS

M-IMG

M-VOX

 

High Performance Computing Auto-Scheduler & Control ARES

 

   

  

Computable Human Phantoms-ViP 3.0 可計(jì)算三維人體組織仿真軟件-ViP 3.0

  

At the core of Sim4Life is a comprehensive set of computable human phan0[toms empowered by the most powerful physics solvers and the most advanced tissue models, providing a realistic biological and anatomical;] environment for conducting fundamental mechanistic studies, testing the effectiveness and safety of medical devices and treatments, and supplementing clinical trials. Based on the Virtual

Population ViP3.0 models of the IT’IS Foundation at ETHZ, the computable phantoms are characterized to predict real-world biological and physiological phenomena for any defined patient population. All tissues are linked to a continually updated physical properties database.

The powerful Sim4Life meshers allow high fidelity discretization of the complex computable human phantoms combined with any implant or external device.

 A complementary interactive morpher extends the demographic coverage of the parameterized anatomical models, e.g., to explore underrepresented or pathological anatomies in clinical trials. A flexible poser is also included with the models.

 Physicians and biologists rigorously validate the models and the associated database. Comprehensive documentation for all natively supported computable human phantoms is available.

Key Features

Native support for the latest generation of the Virtual Population ViP3.0

Largest library of 3D high resolution CAD-based phantoms available on the market

Grid-independent (not based on voxel data), CAD-based anatomical phantom data

More than 15 full body anatomical human phantoms

More than 10 anatomical head models (children, *****, male, female, European, Asian)

Large high-resolution CAD animal models (or voxels via Brooks AF Base voxel data)

More than 10 small animal models (rat, mouse, young, *****, male, female, pregnant, etc.)

High resolution head model with integrated detailed deep brain structures and anisotropy information

Integrated generation of high quality surface models from voxel and image data

Posable anatomical models and support for the parameterization of additional models

Interactive model morphing tool

Generic birdcage CAD models

Validated standard and measurement phantoms (e.g., SAM V4.5, Eli, CTIA/hands, DASY phantoms, etc.)

 

 

 


Physics Models 物理模型

  

P-EM-FDTD :Electromagnetics Full Wave Solvers電磁全波段解算程序

 



The Electromagnetics Full Wave Solvers (P-EM-FDTD) enable accelerated full-wave, large-scale EM modeling (> billion voxels) using Yee discretization on geometrically adaptive, inhomogeneous, rectilinear meshes with conformal sub-cell correction and thin layer models, offering support for dispersive materials. The solvers also include many unique features for EM safety assessments (see IMSAFE).


Optimal simulation speed is achieved with native GPU and MPI accelerations, which were developed by our team that first introduced EM accelerated solvers together with Acceleware in 2006.

The unique bidirectional Huygens box approach overcomes the difficulties associated with models that extend across multiple scales and require strongly varying resolutions.


As the most frequently applied solvers in near-field dosimetry, they have been extensively validated and documented according to the IEEE/IEC 62704-1 standard as well as by comparisons with measured data (> 200 publications). Comprehensive documentation is available for Sim4Life.


 

P-EM-QSQuasi-Static EM Solvers 準(zhǔn)靜態(tài)電磁解算程序 


The Quasi-Static Electromagnetic Solvers (P-EM-QS) enable the efficient modeling of static and quasi-static EM regimes by applying the finite element method on graded voxel meshes. The solvers address the most challenging low frequency problems at the cutting edge of medical and EM compliance applications, e.g., simulations of EEG, MRI gradient coil fields, transcranial magnetic or current stimulation, and deep brain and spinal cord stimulator implants.


Each solver is optimized for a different approximation of Maxwell’s equations, offering improved speed, convergence, and accuracy for a wide range of scenarios. 

 

Measured data and user-defined field or current distributions can be used as sources.

 

The P-EM-QS solvers have been validated and the uncertainties have been quantified using analytical and full-wave solutions and by comparison with measurement data. Comprehensive documentation is available for Sim4Life.




P-THERMALThermodynamics Solvers 熱力學(xué)解算程序 


 The Thermodynamic Solvers (P-THERMAL) enable the modeling of heat transfer in living tissue using advanced perfusion and thermoregulation models. The two solvers adapted from SEMCAD X are based on 1) the finite-difference time-domain solver with conformal surface correction and 2) a steady-state finite volume solver to support adaptive rectilinear meshes and arbitrary active domain shapes.


The solvers allow for the coupled simulation of local vascular effects using discrete networks (1D trees) and, in the near future, CFD results.

 

Exclusive thermal damage and effect quantification models, e.g., T-CEM43, are included.

 

The P-THERMAL solvers have been extensively validated by comparison with analytically solvable cases, experimental measurements under controlled conditions, and in vivo measurements. Comprehensive documentation is available for Sim4Life. 


 



P-FLOWFluid Dynamics Solvers 流體動(dòng)力學(xué)解算程序

 

The high performance computing enabled Fluid Dynamics Solvers (P-FLOW) facilitate the modeling of realistic physiological and pathological biofluidic scenarios in the presence and absence of vascular implants. The stationary and transient Navier-Stokes and Stokes equations are efficiently solved in parallel using a Schur-complement-preconditioned finite element method with runtime solver monitoring, advanced convergence criteria, adaptive time-stepping, tunable stabilization, and optional nondimensionalization. Watch the demo video!



The P-FLOW solvers feature a unique solution to model strongly-coupled fluid-structure interaction problems for medtech applications, e.g., for pulsating vasculature modeling. (coming soon)


Specialized boundary conditions for realistic blood flow modeling (e.g., developed flow) and initial conditions based on measured image data can be applied.


The solvers are comprehensively and continually validated by comparison with analytical solutions for selected problems, benchmark problems, and measurement data. Comprehensive documentation is available for Sim4Life.  




  


P-ACOUSTICSAcoustics Solvers 聲學(xué)解算程序


The two full wave Acoustics Solvers (P-ACOUSTICS) encompass 1) a GPU and OpenMP accelerated non-linear FDTD method with an extended Westervelt-Lighthill equation applied to adaptive rectilinear meshes with inhomogeneous PML boundary conditions and 2) a fast near-field method combined with the hybrid angular spectrum approach (FNM-CHASM) to simulate complex wave propagation inside inhomogeneous tissue distributions and to rapidly calculate pressure distributions for applications such as focused ultrasound treatments. This is state-of-art in computational acoustics.




The novel ultrasound solvers account for pressure wave propagation, density variations and jumps, non-linearity, and diffusivity losses that occur in human tissue.


The FNM-CHASM solver offers near real-time simulations of acoustic propagation in inhomogeneous setups.  

The P-ACOUSTICS solvers have been extensively validated and the associated uncertainties have been quantified using analytical solutions, benchmarks, and robotic 3D-scan hydrophone measurements in complex setups. Comprehensive documentation is available for Sim4Life.  



Tissue Models 組織模型


T-NEURO Neuronal Tissue Models 神經(jīng)組織三維模型

The Neuronal Tissue Models (T-NEURO) enable the dynamic modeling of EM-induced neuronal activation, inhibition, and synchronization using either complex, multi-compartmental representations of axons, neurons, and neuronal networks with varying channel dynamics, or generic models. The solvers are ideal for studying interaction mechanisms, evaluating and optimizing neurostimulating devices, and assessing safety issues. Embedded geometrical and dynamical representation of neurons (soma, axon, and dendritic tree) generate physiologically functionalized anatomical models. (coming soon)

 


本頁(yè)產(chǎn)品地址:http://www.bhxfsw.cn/sell/show-5834845.html
免責(zé)聲明:以上所展示的[三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life 三維人體組織醫(yī)學(xué)仿真軟件平臺(tái)Sim4Life]信息由會(huì)員[北京科斯儀器有限公司]自行提供,內(nèi)容的真實(shí)性、準(zhǔn)確性和合法性由發(fā)布會(huì)員負(fù)責(zé)。
[儀器交易網(wǎng)]對(duì)此不承擔(dān)任何責(zé)任。
友情提醒:為規(guī)避購(gòu)買(mǎi)風(fēng)險(xiǎn),建議您在購(gòu)買(mǎi)相關(guān)產(chǎn)品前務(wù)必確認(rèn)供應(yīng)商資質(zhì)及產(chǎn)品質(zhì)量!

發(fā)布詢價(jià)單

您最近瀏覽過(guò)的產(chǎn)品

沒(méi)有合適的產(chǎn)品?是否在線詢價(jià)?
詢價(jià)標(biāo)題
聯(lián)系人
電話
主要內(nèi)容
驗(yàn)證碼